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Extracellular traps (ETs) are DNA networks formed by immune cells to fight infectious

diseases by catching and attacking pathogenic microorganisms. Uncontrolled

ET formation or impaired ET clearance can cause tissue and organ damage.

Steroid-responsive meningitis-arteritis (SRMA) represents an immune-mediated,

presumably non-infectious, purulent leptomeningitis and fibrinoid-necrotizing arteritis

and periarteritis of young-adult dogs. Chronic and recurrent cases of SRMA are

characterized by lymphohistiocytic inflammatory cell infiltration in the meninges and

perivascular tissue. This study aimed to identify extracellular traps in dogs with SRMA, a

model for immune-mediated diseases in the central nervous system (CNS). Hematoxylin

and eosin-stained samples of two young dogs with chronic, recurrent SRMA were

examined by light microscopy for characteristic lesions and consecutive slices of

affected tissues were stained for detection of ETs by immunofluorescence microscopy

using antibodies against DNA–histone-1 complexes, myeloperoxidase, and citrullinated

histone H3. Histology revealed purulent and lymphohistiocytic leptomeningitis (n =

2/2) with meningeal periarteritis (n = 2/2) and periadrenal located lymphohistiocytic

periarteritis (n = 1). Extracellular DNA networks and inflammatory cell infiltrates

of macrophages, neutrophil granulocytes, and lymphocytes were detected in the

subarachnoid space of the leptomeninx (n = 2/2) and perivascularly in meningeal (n

= 2/2) as well as periadrenal vessels (n = 1/1). In summary, extracellular DNA fibers

and attached ET markers are detectable in affected perivascular and meningeal tissues

of dogs suffering from SRMA. The proof of principle could be confirmed that ETs are

present in canine, inflammatory, and non-infectious CNS diseases and possibly play a

role in the pathogenesis of SRMA.

Keywords: extracellular traps (ETs), steroid-responsive meningitis-arteritis (SRMA), vasculitis, meningitis,

immunofluorescence microscopy, non-infectious, citrullinated histone H3 (H3Cit)
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INTRODUCTION

Several immune cells of the innate immune system, including
neutrophils, eosinophils, monocytes, mast cells, and basophils,
are capable of producing extracellular DNA traps (ETs) (1–5).

Extracellular trap formation can be differentiated in three
pathways: suicidal, vital, and mitochondrial mechanisms (1, 2, 6–
11). The term ETosis was created to define this distinct cell
death apart from necrosis and apoptosis describing the suicidal
pathway of ET formation (6, 12). This particular cell death
involves the resolution of nuclear membrane, decondensation
of chromatin, and mixing with granule components followed by
release of ETs after permeabilization of the cell membrane (1, 6).
ET-related proteins and components such as myeloperoxidase
(MPO), citrullinated histone H3 (H3Cit), and DNA–histone
complexes were used with antibody-based techniques to co-stain
these specific ET markers (13).

The view on ETosis and suicidal ET formation had to be
renewed after a groundbreaking discovery in 2012. Pilsczek et al.
(7) described viable neutrophils performing phagocytosis and
migration after the release of ETs during an acute infection with
Staphylococcus aureus. The term ET formation was expanded
and divided up in suicidal and vital way of ET release (7, 10,
11). Suicidal ET formation is reactive oxygen dependent and
pursues after 3–8 h, whereas vital ET formation is reactive oxygen
independent and performed in 5–60min (6, 7, 14). The third way
of ET formation due to mitochondrial DNA release by viable
cells is not entirely understood (9). In this study, the term ET
formation is used to resume all the different ways of creating
extracellular DNA traps regardless of the cell origin and type of
ET metabolism.

These extracellular DNA formations are composed of a
scaffold of decondensed chromatin fibers equipped with granule
proteins [e.g., myeloperoxidase (MPO) and neutrophil elastase
(NE)], nuclear proteins [e.g., citrullinated histone H3 (H3Cit)],
and antimicrobial enzymes forming web-like structures (1, 13, 15,
16). Beyond phagocytosis, degranulation, and creation of reactive
oxygen species, ET formation is a genuine extracellular strategy
especially of neutrophils to kill, disarm, and entrap invading
pathogens (1, 17, 18).

Recently, study shifted from infectious to non-infectious
diseases investigating potential impact and therapeutic
opportunities of extracellular trap release and degradation.
On one hand, ET formation is another effective antimicrobial
mechanism of the innate immune system combating different
pathogens; on the other hand, excessive ET expression,
unregulated ET release, and insufficient ET clearance can
cause detrimental effects and lead to or are associated with
ET-related pathologies [“ETopathies” (19, 20)]: endothelial

or epithelial tissue damage (21–23), pancreatitis (24, 25),

autoimmune diseases (26, 27), thrombosis (16), vasculitis (28),
and cancer (29, 30).

In dogs, neutrophil extracellular traps (NETs) were recently

described in infectious diseases such as parasitic infections
with Toxoplasma gondii, Trypanosoma cruzi, and Dirofilaria
immitis (31–33) and bacterial infections such as pyometra caused
by Escherichia coli and Streptococcus species (34) and NETs

were isolated from pleural and abdominal effusions in septic
dogs (35). However, the influence on the pathogenesis and
prognosis of ET formation in canine non-infectious diseases,
especially in the CNS, still has to be elucidated. NETs have
an impact on the immune system in canine immune-mediated
hemolytic anemia (36–38), on clot formation and canine
immunothrombosis (16, 39).

Steroid-responsive meningitis-arteritis (SRMA) is an
immune-mediated, systemic, inflammatory, and presumably
non-infectious disorder predominantly in young-adult and
medium-to-large-sized dogs (40). The disease affects typically
6 to 18 month-old dogs with a possible range of 3 months
to 9 years (40–42). SRMA can occur in any dog breed, but is
overrepresented in Bernese mountain dogs, Boxers, Beagles
(43, 44), Nova Scotia Duck Tolling Retrievers, Weimaraners,
and Petit Basset Griffon Vendéens (45). A German study
showed a sex predisposition for male individuals (46), but other
studies do not show significant difference in sex distribution
of this disease (47, 48). The assembly of signalment, clinical
signs, and laboratory findings of CSF and blood analysis
associated with a quick clinical improvement after application
of immunosuppressive therapy with glucocorticosteroids and
an exclusion of an infectious etiology lead to the antemortem
diagnosis of SRMA (40, 48–50).

The typical, acute form of SRMA is characterized by
recurrent fever, cervical hyperesthesia, neck rigidity, stiff gait,
reluctance to move, and depression. Laboratory findings of
the acute form include a moderate-to-severe, non-degenerative
neutrophilic pleocytosis of the cerebrospinal fluid (CSF) and
blood profiles show a neutrophilic leukocytosis with left shift
(44, 51). Furthermore, elevated immunoglobulin A levels in
serum and CSF serve as diagnostic tool (44, 52). Levels of acute
phase proteins such as C-reactive protein, serum amyloid A,
haptoglobin (53), or neutrophil gelatinase-associated lipocalin
(54) are elevated in the acute disease episode compared to
non-inflammatory neurological diseases. Especially, CRP is
used as a remission and therapy monitoring marker (55).
Pathohistologically, the acute form is represented by a multifocal
to generalized fibrinoid-necrotizing vasculitis with thrombosis
and purulent leptomeningitis preferentially in the meninges of
the cervical spinal cord (40, 43, 56–58).

The atypical, chronic, and protracted form of SRMA
is observed primarily due to relapses and inadequate,
immunosuppressive treatment. CSF analysis predominantly
reveals mononuclear cells (44) and non-suppurative,
mononuclear cell infiltrates in the meninges and perivascular
tissue dominate pathohistological findings (58).

Steroid-responsive meningitis-arteritis offers ideal
circumstances for the possible detection of ETs for the first
time in canine central nervous system (CNS) tissue representing
an immune-mediated, inflammatory, and non-infectious
neuronal disorder mainly driven by a neutrophil immune
response (40, 44). ET detection in the acute phase of Kawasaki
disease of children, which causes a comparable vasculitis with
consecutive inducing tissue damage-like SRMA, was successful
(59–61). Consequently, we hypothesized that ETs take part in
the etiopathogenesis of SRMA and a successful detection of ETs
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in the commonly affected tissues of meninges and vessels seems
promising. This study should be a proof of principle that ETs can
be detected in histologically confirmed cases of SRMA. Based
on confirmation of extracellular DNA traps, corresponding
clinical studies, new diagnostic, and treatment strategies could
be developed.

MATERIALS AND METHODS

Sample Collection
From the archive of the Department of Pathology, two dogs
were selected for this study. The inclusion criteria were
signalment, reported clinical signs, pathohistological findings
such as purulent or lymphohistiocytic leptomeningitis with
associated arteritis or periarteritis, and no detectable pathogens
with special staining such as periodic acid–Schiff-reaction,
Gram’s staining, Ziehl–Neelsen’s staining, or Grocott’s silver
impregnation method. Retrospective study revealed that no
further microbiological or virologic examination was conducted
on serum or CSF samples of these dogs to exclude a
pathogenetic etiology.

Histological Evaluation
Routinely processed formalin-fixed and paraffin-embedded
(FFPE) tissues of the affected dogs were selected from the
block archive of the Department of Pathology for further
histopathologic and immunofluorescent examination.

Regions of affected tissue of the cervical spinal cord with
associated leptomeningeal vessels and peripheral, particularly
periadrenal vessels were embedded in paraffin and cut at 2–
4µm for H&E and immunofluorescence staining. H&E staining
of the affected tissue was performed by automated dying in
Leica ST4040 (Leica, Wetzlar, Germany) with 0.1% hematoxylin
(Roth, Karlsruhe, Germany) and 1% eosin (Roth, Karlsruhe,
Germany). The presence of vascular and meningeal lesions was
evaluated qualitatively by a board certified veterinary pathologist
[the European College of Veterinary Pathologists (ECVP)] with
special emphasis on neutrophilic and inflammatory cell invasion
in the vascular walls or meninges. The H&E slides were examined
microscopically on an Olympus BX53 (Olympus, Tokyo, Japan)
light microscope. Pictures were edited with ImageJ software
(version 1.53, National Institutes of Health, USA).

Extracellular Trap Examination
For ET detection, unstained, native paraffin slides of affected
tissues of the spinal cord, brain, and periadrenal arteries were
analyzed. Co-staining of DNA–histone-1 complexes and MPO
or H3Cit was performed according to the following protocol as
previously described (62, 63) with the following changes.

After permeabilization for 10min (0.1% Triton X-100)
and blocking for 20min (blocking buffer for co-staining
of DNA–histone-1 complexes and MPO: 5% bovine serum
albumin, 5% goat serum, 2% cold water fish gelatin, 0.05%
Tween-20, and 0.05% Triton X-100; blocking buffer for co-
staining of DNA–histone-1 complexes and H3Cit: 10% fetal
calf serum, 2% bovine serum albumin, 0.05% Tween-20, and
0.1% Triton X-100), samples were incubated overnight at

4◦C using the following first antibodies, diluted in respective
blocking buffer: mouse monoclonal IgG2a anti-DNA/histone
(Millipore MAB3864, Billerica, Massachusetts, USA; 0.55mg/ml;
1:100) and rabbit antihuman myeloperoxidase (Dako, A0398,
3.3 mg/ml, 1:300) or rabbit antihuman H3Cit (citrulline R2
+ R8 + R17) antibody (Abcam, ab5103, Cambridge, UK,
1 mg/ml, 1:31.6). For isotype control, murine IgG2a (from
murine myeloma M5409, Sigma Aldrich, Munich, Germany, 0.2
mg/ml, 1:36.4) and rabbit immunoglobulin G (IgG) (from rabbit
serum I5006, Sigma Aldrich, Munich, Germany, 1.16mg/ml,
1:108.75 for staining of DNA–histone-1 complex and MPO
1:36.7 for staining of DNA–histone-1 complex and H3Cit) were
used. The secondary staining was performed for 1 h in the
dark at room temperature using a goat anti-rabbit Alexa 633-
conjugated antibody (Invitrogen, Carlsbad, California, USA, 2
mg/ml, 1:500) and a goat anti-mouse Alexa 488-conjugated
antibody (Invitrogen, Carlsbad, California, USA, 2 mg/ml,
1:500). Counterstaining of DNA was performed with aqueous
Hoechst 33342 (Sigma B-2261, St. Louis, Missouri, USA, 0.5
mg/ml, 1:1,000) for 10min. At the end, all the samples were
processed with the TrueVIEW Autofluorescence Quenching Kit
(Vector laboratories, San Francisco, California, USA) following
the manufacturer’s instructions and covered with Mounting
Medium of the TrueVIEW Autofluorescence Quenching Kit
(Vector laboratories, San Francisco, California, USA).

Serial cuts of histopathologically altered tissues were
stained and analyzed, whether ET formation or ET markers
were detectable. Neutrophils and macrophages infiltrating
the subarachnoid space, meningeal arteries, and extraneural
perivascular tissue of SRMA-affected dogs are capable of
releasing extracellular DNA fibers consisting of ET-markers such
as DNA–histone-1 complexes, attached MPO, or H3Cit, which is
a typical and strong evidence of ET formation (1, 64–66).

Extracellular trap formation was semiquantitatively analyzed
in the meninges of the spinal cord and affected vessels. The
amount of ET formation was counted in five 400µm × 400µm
fields (0.16 µm2) of affected tissues of each dog and compared to
each other (Table 1).

Immunofluorescence Microscopy
The stained samples were examined microscopically on a Leica
TCS SP5 AOBS confocal inverted-base fluorescence microscope
with HCX PL APO 40 × 0.75–1.25 oil immersion objectives
with an Argon 405 and 633 nm laser (Leica, Wetzlar, Germany).
The settings were adjusted using isotype control antibodies in
separate preparations. Pictures were edited with ImageJ software
(version 1.53, National Institutes of Health, USA).

RESULTS

Signalment, History, Macroscopic, and
Histopathological Findings
Two dogs were included with histological lesions indicative
of acute and chronic SRMA. The first dog was an 11 months
old, male Bernese mountain dog. Anamnestically, this dog
had recurrent episodes of pyrexia up to 41◦C and lameness.
Laboratory findings revealed moderate leukocytosis of 25,000/µl
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TABLE 1 | Semiquantitative analysis of extracellular trap (ET) events in five

representative immunofluorescent pictures.

Bernese mountain Petit Basset Griffon

dog Vendéen

Localization ET-events/ Average ET-events/ Average

0.16 µm2 0.16 µm2

Vessels intraluminal 4, 1 2, 5 1, 1 1

intramural 0, 0 0 0, 0 0

perivascular 16, 4 10 11, 7 9, 5

Meninges 13, 10, 14 12, 3 25, 20, 22 22, 3

ET events were semiquantitatively analyzed by counting matching extracellular MPO or

H3Cit and DNA-histone-1-complex singals in affected tissues in a square of 400 x 400µm.

Meninges and Vessels divided in intraluminal, intramural and perivascular events were

seperately screened for ETs for each dog. Intraluminal there was no event detectable.

Perivascularly and intraluminally there was no big difference in the counted ET-events.

Meninges of the Petit Basset Griffon Vendéen were histopathologically (Figures 3A, 4A)

and semiquantitatively more affected than the meninges of the Bernese mountain dog

(Figure 1A).

and elevated protein content of the CSF [positive Pandy-
reaktion (+)]. Initial treatment was started with doxycycline
and prednisolone for an unknown period and clinical signs
were ameliorating. 3 weeks after terminating the medication,
the dog relapsed and showed similar clinical signs with episodes
of fever and leukocytosis of 28,000/µl. Another treatment with
prednisolone was initiated and the dog was anesthetized for
further diagnostics, but developed cardiorespiratory arrest. After
unsuccessful resuscitation, it was sent to the Department of
Pathology for necropsy. Necropsy revealed only agonal gross
changes. Pathohistological evaluation of the cervical spinal cord
revealed infiltration of neutrophils, macrophages, lymphocytes,
and plasma cells resulting in a moderate diffuse, purulent, and
lymphohistiocytic leptomeningitis (Figure 1A). Extraneural
findings showed moderate infiltrations of lymphocytes,
macrophages, and plasma cells causing a subacute to chronic,
diffuse lymphohistiocytic, periadrenal periarteritis (Figure 2A).

The second dog was a 5-month-old, female, Petit Basset
Griffon Vendéen, which was euthanized because of a pleural
effusion causing dyspnea and additional acute kidney injury
(urea in the aqueous humor: 180 mg/dl). The history revealed
undulating fever episodes of unknown origin and relapsing
episodes of forelimb lameness. No treatment strategies were
attached to the submission report of this dog. Anamnestically,
another littermate was affected with comparable clinical signs.
Necropsy revealed diffuse subdural hemorrhage expanding from
the cerebellum throughout the dural tube. A circumferential
dark red mass was located in the precardiac mediastinum (4 cm
× 4 cm × 3 cm). In the thoracic cavity, there was a hemothorax,
consisting of partially clotted 300ml in the left and 100ml in
the right pleural cavity. Pathohistologically the leptomeninx of
the cervical spinal cord was moderately-to-severely infiltrated
with neutrophils, macrophages, lymphocytes, and plasma cells
showing a severe, subacute, multifocal, lymphohistiocytic
leptomeningitis accompanied with severe subarachnoid
hemorrhage with erythrophagocytosis (Figure 3A). Cervical

meningeal arteries revealed mild periarterial infiltration of
lymphocytes, macrophages, and few neutrophils resulting
in a moderate, acute, diffuse, lymphohistiocytic periarteritis
with an intraluminal thrombus formation and meningeal
hemorrhage (Figure 4A).

Both the dogs showed features of chronic-active and
acute neural and extraneural histopathologic lesions that are
characteristically observed in undulating clinical courses of
SRMA (44, 67). The severity of meningeal inflammatory
infiltration of the Bernese mountain dog was lower than of the
Petit Basset Griffon Vendéen.

Immunofluorescence Findings in Meninges
and Arteries of Canine Steroid-Responsive
Meningitis-Arteritis
As a next step, we used fluorescence microscopy to visualize
formation of ETs in the biopsies. Since the major backbone
of ETs is DNA, DNA intercalating dyes are widely used to
stain ETs based on the electrostatic interactions of these dyes,

e.g., 4
′

, 6-diamidino-2-phenylindole (DAPI) with DNA (13).
However, thismethod cannot discriminate betweenDNAderived
from ET-releasing cells vs. necrosis. Furthermore, it has to be
considered that some granule components such as antimicrobial
peptides block the visualization of ETs by DNA-intercalating dyes
(68). Therefore, antibody-based techniques that stain ET-specific
markers such as DNA–histone complexes in combination with
cell-specific proteins that are frequently found associated with
ETs such as myeloperoxidase are needed to confirm release of ETs
by immunofluorescence microscopy (13, 68–70).

Using this technique, the lymphohistiocytic, periadrenal
periarteritis of the Bernese mountain dog showed mild presence
of DNA–histone-1 complex positive web-like structures and
moderate, extracellular MPO signal surrounding infiltrating
macrophages. ET formation appeared perivascularly and
intraluminally, but was not to be found in the vascular walls
(Figures 2B,C; Table 1). These ET detections were similar to
histopathological findings, which showed only perivascular
inflammatory cell infiltration. Meningeal lesions occurred
in contrast to perivascular lesions with mild infiltration of
neutrophils next to macrophages and lymphocytes. Mild-to-
moderate detection of extracellular DNA–histone-1 complexes
and MPO as ET markers could visualized in the meninges of the
spinal cord around infiltrating neutrophils (Figures 1B,C). To
sum up pathohistological as well as immunofluorescent findings,
ET formation could present in the meninges and extraneural
arteries of this dog.

Extracellular trap markers in terms of extracellular DNA–
histone-1 complexes and MPO were also positive in the
meninges of the Petit Basset Griffon Vendéen. Infiltrating
neutrophils, macrophages, and lymphocytes causing a
purulent to lymphohistiocytic leptomeningitis are forming
ETs proven by DNA–histone-1 complex, MPO, and H3Cit
signals in this affected area (Figures 3B,C, 4B,C). Summarizing
pathohistological and immunofluorescent findings of this dog,
ETs were present at the time of death in damaged meninges and
meningeal arteries. Respective isotype control images did not
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FIGURE 1 | (A) An 11-month-old Bernese mountain dog. Histopathology. Cervical spinal cord: predominant infiltration of neutrophils and macrophages resulting in a

moderate diffuse, purulent leptomeningitis. H&E. Scale bar = 100µm. (B) Serial cuts of the concurrent formalin-fixed and paraffin-embedded (FFPE) block.

Extracellular traps (ETs) as extracellular DNA fibers with associated myeloperoxidase (MPO) were present in the purulent leptomeningitis of the spinal cord. Settings of

the immunofluorescence images were adjusted to a respective isotype control. Representative images are shown. IF. Blue, counterstaining of DNA (Hoechst), green,

DNA–histone-1 complexes (ETs), and red, myeloperoxidase (MPO). Scale bar = 100µm. (C) Zoom picture of area 1. IF. Scale bar = 20 µm.

show any signal intensity at DNA–histone-1 complex, MPO, or
H3Cit settings.

DISCUSSION

In this study, we could proof our hypothesis that ET formation
and ET markers of two representative dogs suffering from SRMA
are detectable and visualizable in typical affected tissues such
as meninges of the cervical spinal cord and neural, as well as
extraneural vessels. To the best of the author’s knowledge, this
is the first study confirming the presence of extracellular DNA
formations composed of DNA–histone-1 complexes, MPO, or
H3Cit in the CNS of dogs and especially affected with SRMA.

ET formation was present in acute and chronic-active lesions
of recurrent, waxing-waning disease periods of both the dogs,
implicating that this mechanism of the immune system seems to
play a certain role in the pathogenesis of SRMA.

As hallmark of the pathogenesis of SRMA, neutrophils
conquer the subarachnoid space causing a neutrophil pleocytosis
of the CSF (44). The detailed mechanism of this immune
compartmentalization is not fully understood. Neutrophil
recruitment to vascular wall adhesion is mediated by CD11a
upregulation (51) and a possible factor of the blood–brain barrier
disruption is caused by releasing matrix metalloproteinases-
2 and−9 (MMP-2/-9) (71). Khandpur et al. (27) positively
correlate the amount of netting neutrophils and production of
interleukin-17 (IL-17). These findings could be supported by
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FIGURE 2 | (A) An 11-month-old-Bernese mountain dog. Histopathology. Periadrenal artery: Moderate infiltration of lymphocytes, macrophages, and plasma cells

causing a moderate, subacute to chronic, diffuse lymphohistiocytic, periadrenal periarteritis. H&E. Scale bar = 100µm. (B) Serial of the concurrent FFPE block.

Extracellular traps (ETs) as extracellular DNA fibers were detected in the perivascular region of a periadrenal artery. Settings of the immunofluorescence images were

adjusted to a respective isotype control. Representative images are shown. Blue, counterstaining of DNA (Hoechst), green, DNA–histone-1 complexes (ETs), and red,

myeloperoxidase (MPO). IF. Scale bar = 100µm. (C) Zoom picture of area 1 is presented. IF. Scale bar = 20µm.

Freundt-Revilla et al. (72) that production of IL-17 ensures
neutrophil granulocyte recruitment in the CNS compartment
and disruption of the blood–brain barrier in dogs with SRMA.
IL-17 production in dogs with SRMA can lead to increased
NET formation and may facilitate the leukocyte extravasation of
neutrophils by disrupting the blood–brain barrier.

We hypothesize that ET formation interdigitates with the
current detailed knowledge of immunologic dysregulation
causing SRMA (43). Recently, it was shown that ET formation
promotes vasculopathies (73) and externalization of ET-
associated proteins such as histones and MPO leads to vascular
barrier injury (23, 74, 75). Especially, histones are described
in small-vascular angiopathies to drive vascular damage and
vascular wall necrosis (23, 74, 75). The positive evidence of

H3Cit in the meningeal arteries could be another explanation
to the invasion and compartmentalization of neutrophils in the
subarachnoid space with associated hemorrhage and frequently
detected fibrinoid-necrotizing arteritis in SRMA (43).

Furthermore, histones asmajor proinflammatory components
of extracellular released DNA traps may drive and perpetuate
the innate immune response and maintain persistent sterile
inflammation in SRMA through interaction with Toll-like
receptor (TLR) 4 (76–78). Being part of pattern recognition
receptors (PRRs), TLRs play a crucial role of the innate
immune system and stimulating the adaptive immune response
(79). They are able to recognize foreign, pathogen-associated
molecular patterns (PAMPs) in infectious diseases, as well as
host-derived damage-associated molecular patterns (DAMPs)
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FIGURE 3 | (A) A 5-month-old Petit Basset Griffon Vendéen. Histopathology. Cervical spinal cord: Moderate-to-severe infiltration of neutrophils, macrophages,

lymphocytes, and plasma cells causing a severe, subacute, multifocal, lymphohistiocytic leptomeningitis H&E. Scale bar = 100µm. (B) Serial cuts of the concurrent

FFPE block. Extracellular traps (ETs) as extracellular DNA fibers and ETs markers were detected in the subarachnoid space. Settings of the immunofluorescence

images were adjusted to a respective isotype control. Representative images are shown. IF. Blue, counterstaining of DNA (Hoechst), green, DNA–histone-1 complexes

(ETs), and red, myeloperoxidase (MPO). Scale bar = 100µm. (C) Zoom picture of area 1 is presented. Scale bar = 20µm.

produced by tissue damage or cell death (80). Maiolini et al.
(81) described higher expression of TLR-4 and TLR-9 on
polymorphonuclear cells and monocytes in the acute stage of
SRMA. The upregulation of this PRR on immune cells mediating
the pathogenesis of SRMA such as neutrophils and macrophages
illuminates chronic inflammation and autoimmunity and may be
attributed due to higher levels of H3Cit (82, 83).

In addition, higher concentration of intrathecal produced
extracellular heat shock protein 70 (eHSP70) as representative
example of the DAMP family may interact with TLR4 (84).
Continuous activation of neutrophils releasing their ETs due to
interaction with DAMPs such as citrullinated histones or other
host-derived self-antigens such as eHSP70 can lead to a vicious
circle of autoimmunity and supporting the theory of existing

autoantigenic triggers (14, 85). Based on these findings, the
hypothesis of an existing self-antigen or environmental trigger
acting according to the hit-and-run principle must be requested.

Furthermore, the externalization of ETs is the source of major
autoantigens for autoantibody formation and is supposed to be
pathogenic in several autoimmune-derived diseases (86). Until
now, autoantibodies against endogenous CNS tissue only serve
as “epiphenomenon” of SRMA (40, 87). If the presence of these
major autoantigenetic in terms of ET-associated structures drive
and maintain immunologic processes in meninges and vessels
of these dogs, the complex pathogenesis of SRMA could be
well explained.

Histopathological and immunofluorescent findings
(Figures 1–4) of acute and chronic lesions in both the dogs
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FIGURE 4 | (A) A 5-month-old Petit Basset Griffon Vendéen. Histopathology. Cervical meningeal arteries revealed moderate perivascular infiltration of lymphocytes,

macrophages, and a few neutrophils resulting in a moderate, acute, diffuse, purulent, lymphohistiocytic periarteritis. H&E. Scale bar = 100µm. (B) Serial cuts of the

concurrent FFPE block. Extracellular traps (ETs) as extracellular DNA fibers were detected in the subarachnoid space and perivasculary. Settings of the

immunofluorescence images were adjusted to a respective isotype control. Representative images are shown. IF. Blue, counterstaining of DNA (Hoechst), green,

DNA–histone-1 complexes (ETs), and red, myeloperoxidase (MPO). Scale bars = 100µm. (C) Extracellular traps (ETs) as extracellular DNA fibers were detected in the

subarachnoid space and perivasculary. Settings of the immunofluorescence images were adjusted to a respective isotype control. Representative images are shown.

IF. Blue, counterstaining of DNA (Hoechst), green, DNA–histone-1 complexes (ETs), and red, citrullinated histone H3 (H3Cit). Scale bars = 100µm.

represented by mainly lymphohistiocytic, as well as neutrophils
invading meninges or perivascular spaces could be explained
with prolonged activation of macrophages and neutrophils
generating ETs or an impaired self-clearance of ETs. Remnants
of ETs could serve as constant trigger in terms of DAMPs for
immune cells maintaining CNS and vascular inflammation
resulting in continuous invasion of neutrophils in this already
chronic process. Both the dogs showed similar pathohistologic
lesions of chronic active inflammation at the time of death with
different amount of ET formation (Table 1). In general, the
meninges of the Petit Basset Griffon Vendéen were infiltrated
more severely than in the Bernese mountain dog. This could

be explained by a more acute and severe clinical course of
the Petit Basset Griffon Vendéen in contrast to the Bernese
mountain dog. Another explanation could be the different
pharmacological influence of variably administered anti-
inflammatory drugs. Primarily perivascular detection of ETs was
present in affected arteries.

Generating histological samples in the future will be very
unlikely because clinical diagnosis, treatment management, and
awareness of this disease reduced the mortality of SRMA in the
last decades (44, 46, 88). Therefore, prospective clinical studies
could confirm antemortem evidence of ETs in dogs measuring
ET markers and correlating ET inducers in clinical accessible
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samples of serum and CSF such as H3Cit and cell-free DNA.
Visualization or stimulation assays of ETs released by isolated
nucleated cells in CSF samples in acute diseased, treated, and
relapsed dogs with SRMA offer another possibility supporting
the results of this study. Comparing ET markers to dogs with
other inflammatory as well as non-inflammatory CNS diseases
of infectious and non-infectious origin is necessary to probably
underline and distinguish the final role of ETs in the pathogenesis
of SRMA.

Treatment of autoimmune and immune-mediated diseases in
veterinarymedicine is lacking of specific therapeutic options such
as the usage of recombinant monoclonal antibodies, intracellular
pathway modulating, or receptor-targeting drugs (89). Also,
steroid therapy is associated with many undesirable side effects
and 30% of human patients are identified as “non-responders”
or resistant to glucocorticoid application (88, 89). Specific ET-
targeting therapeutics options with fewer side effects such as
DNases (90) exist in human medicine and urge to be tested
in veterinary medicine. SRMA represents an ideal large animal
model of suppurative, non-infectious meningitis with proven
ET formation to evaluate and develop new therapeutics in
future research studies in a translational context (81). Based
on this pilot study of ET formation in the CNS of dogs,
clinical studies will be performed investigating the influence on
canine neuropathies.

In conclusion, ETs are detectable in tissue samples of

necropsied SRMA cases. This study represents the first trial
to proof of principle of ET visualization in canine central

nervous system tissue. The detection of ETs in SRMA gains
new possibilities to explore the existence and etiopathogenetic
influence of this host mechanism of immune cells in infectious
and non-infectious canine neuropathies. To give an outlook, a
magnitude of study is required concerning clinical importance
of innovative diagnostics tools as remission and therapy marker
and the development of specific, ET-targeting therapeutic options
with fewer side effects than conventional glucocorticoid therapy.
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